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RESEARCH OBJECTIVES
The primary research objective of this project is to develop and evaluate methods
of measuring the parameters of single evoked potential (EP) waveforms. Currently the
research falls into the following two areas.
a. Investigation of pattern recognition procedures for discriminating among various
evoked potential waveforms.

b. Investigation of preprocessing and filtering techniques to provide improved
waveform estimation.

b STATUS OF RESEARCH EFFORTS
. Significant results have been obtained in the areas of research relating to this pro-
- ject. These are briefly described in the following paragraphs and are further described

in the publications resulting from the research.

Feature Selection for Aulomatic Classification. It has been shown by simulation
& and experiment that it is possible to effectively classify EP waveforms into categories
. corresponding to the stimuli that produced them. Two problems associated with this
procedure are selection of the best features from the data set to use in making the
classification and the errors that result from interference due to the ongoing EEG.
Both of these problems have been addressed as part of this research project and pro-
tedures developed to mitigate their effects on system performance.

In the classification procedures being utilized here the features upon which a deci-
sion is made are the waveform amplitudes at regularly spaced sampling intervals.
These samples are taken from a segment of the EP waveform immediately following
stimulation and extending up to as much as 500 ms. The sampling interval is typically
4 to 20 ms. It is a general property of classification procedures of this type that
increasing the number of features employed in the classification improves performance
"up to a certain (relatively small) number of features after which performance begins to
decrease. The problem is to select the best subset of features from the complete set.
2 ' Two methods that have been widely used for feature selection are Forward
Sequential Feature Selection (FSFS) and Stepwise Linear Discriminant Analysis
1 (SLDA). The FSFS algorithm performs a classification of the training set using cach
feature individually in s sequential manner. The feature yiclding the lowest error rate
of: classification is then selected. The next step is to combine this first feature with
eath of the other features and reclassify the training set to pick the pair of features
that gives the lowest error rate. This process is continued until no further improve-
o ments in accuracy are obtained by adding additional features or until the desired

Amnrtggggl&glg%a&g?&%mm&g.( A}‘m is not an optimum procedure because there
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i no basis for assuming that because one feature works the best alone that that feature
paired with any other feature would be the best two features for classification and the
same thing applies for larger numbers of features. :

The SLDA algorithm proceeds in much the same manner as the FSFS algorithm
except that the criterion used to select the best feature at each step is based upon a
statistical test rather than a computed error rate. The test used is a one way analysis
of variance. The SLDA also tests for loss of significance of any of the features already
entered and thus can remove variables or features that have becn previously selected.
However, in the applications that we have made of this procedure, previously selected
variables have not been removed by the procedure. This procedure is also a nonop-
timum procedure and is only applicable to linear discriminant analysis.

One method of obtaining an optimum feature subset is to test all possible subsets
for their performance in a classifier. The difficulty with this procedure is that a great
amount of computation is required in order to test every combination of features that is
available from a large set. For example, selecting five features out of a set of 27 would
require the design and testing of 100,000 different classifiers. However, it was found

"that by writing all computer subroutines in assembly language and by calculating the

discriminate function using the algorithm for regression by “leaps and bounds”# the
computation could be made feasible for linear discriminant analysis. Using this pro-
cedure it is then possible to compute the optimum feature set and to compare perfor-
mance with the optimum feature set with those features seleccted by the FSFS and
SLDA algorithms. Also some additional information can be obtained by examining
which features are selected by each procedure to see what commonality exists among
them.

The classification performance using features selected by each of the three tech-
niques was measured using both artificial simulation data and using real evoked poten-
tial data. The simulated data was generated by adding known deterministic signals to
random noise sequences. The noise was generated as a Markov process having various
half-power bandwidths. The signals corresponded to average evoked potential
waveforms measured experimentally using the unexpected event paradigm in which a
letter regularly appears but is inverted in a random manner approximately 10% of the
time. An experiment of this type is the source of the real data that is considered subse-
quently. Tests were made using noise of various bandwidths ranging from 4 to 25 hertz
and evaluation was made by training and testing on the same data set. Eighty samples
.ingeach class were used in the simulation. Three linear classifiers using features selected
by FSFS, SLDA, and Exhaustive Search Feature Selection (ESFS) and a quadratic
classifier using FSFS were evaluated.

sFyrnival, G. M. and Wilsoa, R. W., “Regression by Leaps and Bounds,” TecAnemelrics,
Vol. 16, 1974.
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Table 1 shows the results for noise bandwidths of 8 hertz and for signal-to-noise
ratios of -3dB, -6dB and -9dB. For this case the noise bandwidths were the same for
the two classes and so their covariance matrices were also identical for the two classes.
Tpble 2 shows the results for the case when the covariance matrices of the noise are
different for the two classes as a result of using a noise bandwidth of 8 hertz for one
-class and 14 hertz for the other class. It is seen from Table 2 that ESFS has the same
kind of improvement in performance for the case of unequal covariance matrices as it
did for equal covariance matrices for the two classes. The FSFS procedure with a qua-
dratic discriminant function seems to give somewhat better performance for the
unequal covariance matrices than do the linear discriminant functions.

[! A comparison of the several feature selection and classification procedures using
4
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measured evoked potentials was also carried out. Data was collected from four human
: subjects for the unexpected event paradigm. A sequence of letter v’s was shown to the
3 subject with a random occurrence of an inverted v occurring 10% of the time. For
; each subject three electrode sites were used, Cz, Pz and Oz. Feature selections and
2 classifications for all electrode sites were then carried out. Table 3 shows the results for
¢ one of the subjects. As in the case of the simulated data the ESFS procedure gave a
modest improvement in classification performance over the other linear methods. How-
3 ever, the quadratic discriminant function using FSFS in a number of cases gave better
- performance than the ESFS procedure.

E‘ In addition to the classification results using the experimental data a record was
3 also made of the features actually selected by the different procedures. Table 4 shows
the features that were selected at the various steps for the same subject as in Table 3.
In most instances it was found that the first feature selected was the same by all

methods but from then on there was often divergence particularly with the ESFS algo-
F rithm. Oftentimes the initial feature chosen or early feature sets are not contained in
- the final feature sets. An example of this is shown in Table 4 for electrode Cz, where

. none of the features selected in Steps 1 and 2 were included in the feature set obtained
1 at Step 5.

. The general conclusion of these tests is that the exhaustive search feature selection
3 procedure gives a modest improvement in performance of the classifier for both the
‘ simulated and experimental data. In almost all cases fcatures selected at the various
steps of ESFS did not contain all the features selected in previous steps. Features were
' constantly replaced by new ones when moving to the next step. This was never the
g pase for SLDA even though SLDA contained the capability of removing features at
“each step.
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. Artificial, equal covar. Data sets Se and 5u, -34B S/N.

Noise 7 Step Average Classification Rat.
. Bandwidth umber

| ' 1 72.50% 72.50% 63.00% | 72.50%
:..j B¥1 Bhz 2 76.28% 70.25% N1X | 718.7%%
:._: BW2 8hz 3 81.25% 81.25% 00.00% | 83.78%
.. s

-~ 4 83.78% . 73% 80.28% .| 00.78%
g 8 83.78% _B.73% 85.00% | 91.28%

. Artificial, equal covar. Data sets Se and 5u, -84B S/N.

i‘i Noise Step Average Classification Rate
% Bandwidth | Number i
3 1 70.00% 70.00% 00.00% | 70.00%
- BW1 Bhz 2 71.28% 71.25% e7.50% | Tamex
! BW2 Bhz ) 78.00% 6.00% 70.00% | 77.80%
4 76.25% 70.25% 80X | 61.28%
—3. J7.90% J7.50% J8.25% | 63.75% |
. Artificial, equal covar. Data sets Se and Su. -94B S/N.
g Noise Step Average Classification Rate
Bandwidth | Number
1 63.75% 63.75% 88.28% | 63.75%
BW1 8hz 2 €8.78% 00.73% 80.00% | 68.79%
BW2 8hz 3 70.00% 70.00% 08.25% | 7R.80%
4 71.25% 7.28% 00.75% | 75.00%
. & -3 J2.90% 72.50% L00.75% | 76.25% |
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Table 2

. Artificial, unequal covar. Data sets 2e and 6y, -3dB S/N.

- Noise Step Aver: asgification
and h umber
| 1 71.25% 71.25% 70.00% | 71.25%
- ’ ' BY1 Bhe 2 1.50% 7.80% T.90% | 78.78%
BW2 14hz 3 82.50% 2.50% 7% | s3mx
! 4 07.50% 87.80% ®sox | e7.00%
| s se.75% ____osox gs.2o% | es.78x |
t‘ Artificial, unequal covar. Data sets 2¢ and Bu, -8dB S/N.
B Noise Step Average Classification Rate
N Bandwidth | Number {
- 3 00.75% €.75% ee2sx | s
. BW1 8hz 2 72.50% 72.30% 70.00% | TR.80X
BY2 14hz s re.25% 8.00% 7.75% | Tr.80%
& 4 e.78% 7.25% 7.75% | 80.00%
- ) Jem% _re.m% 7o.00% | 96.00% |

3  Artificisl, unequal covar. Data sets 2¢ and 8u, -9dB S/N.

; Noise Step A ssification Rate

g Bandwidth | Numbe

l:‘ 1 7.50% 7.50% 90.00% | 67.90%
BW1 Shz ) €7.50% 0.00% 08.00% | e0.78%
-

L_f ¢ 0.00% 72.80% es2sx | 78.00%
. <"

: 3 LT NBX_ 7208 | ve.80%
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Table 3

- fsal data, error rate. Subject 3. Electrode Oz.

Data Step Average Classification Rate
ructure | Number i
| 75.00% 70.75% 75.00% | 75.00%
expected- 82.50% 88.25% 8250x | a2.50%
unexpected 3 87.50% 87.50% 8. 78% | 87.50%
event 4 a7.50% 87.50% 83.00% | 87.50%
-] 88.75% 87.50% 85.00% | 88.73%
Real data, error rate. Subject 3. Electrode Pz,
Data Step Average Classification Rate
Structure | Number j i
1 78.25% 75.00% 70.25% | M.25%
expected- 2 80.75% Qa.78% 83 78% | sa7s%
unexpected S 80.25% 88.25% 82.50% | 87.50%
event 4 80.25% 90.00% 82.75% | 88.73%
s 80.25% $0.00% 25%x | 91.25%
Real data, error rate. Subject 3. Electrode Cz.
Data Step Average Classification Rate
Structure | Number
1 7% 7.78% 7280% | 7.75%
expected- 2 8.00% 0.75% 80.00% | 85.00%
unexpected 3 00.25% 88.25% 8280% | 88.25%
event 4 88.25% 87.50% 83.75% | 87.50%
$ 80.25% 00.73% |_90.00% |
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Table &

" . Real data. Subject 3. Electrode Oz,

Step Latency of Feature(s) Selected (milliseconds)
1 576 878 578 S768
2 578 196 $76 196 578 198 196 578
3 876 196 2186 8§78 196 176 576 198 276 196 218 576
; 4 $76 196 218 128 878 196 176 238 576 196 276 470 136 196 218 578
1 . 5 $76 196 218 136 258 $76 198 176 236 438 576 196 276 478 338 136 176 198 216 576

Real data. Subject 3. Electrode Pz.

Latency of Feature(s) Selected (milliseconds)
1 878 556 578 576
2 $76 296 856 298 576 296 200 576
3 $76 206 178 558 206 456 576 208 478 208 478 556
4 | 8578 296 176 238 8§56 296 456 478 576 2968 478 156 158 316 336478 |
5 578 206 178 238 258 550 206 456 478 196 576 298 476 156 378 158 316 390 476 658 |
rd
Real data. Subject 3. Electrode Cz.
Step Latency of Feature(s) Selected (milliseconds)
1 856 200 578 868
2 556 298 290 556 878 298 208 556
3 556 296 138 206 558 158 576 208 470 138 298 386
4 556 206 126 196 2908 556 156 396 576 206 478 378 168 208 458858 |
5 | 556206 136196218 | 208856 156308 276 | 576 208 478 376 656 | 136 208 316 456 578 |
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Time-Varying Filler In the measurement and analysis of evoked potentials it is
generally known within what time epoch the signal occurred. However, often the signal
can take a variety of forms through variations in latency amplitude or even occurrence
of particular components in the EP. By incorporating all known apriori information
both deterministic and probabilistic into the processor design it is possible to obtain

-spbstantial improvements in waveform estimation over processors mot utilizing this

information. Because of the signal’s occurrence in a particular time epoch in combina-
tion with the ongoing EEG the resulting waveform is a sample function of a non-
stationary random process and the optimum processor takes the form of a time-varying
filter. For processing sampled data the filter is a matrix operator whose elements are
determined from the known or assumed parameters of the underlying random processes
associated with the signal and the ongoing EEG. The filter operator is selected to
minimize the mean square error of the estimate and is given by the following expression
H = KK

where K,, is the cross covariance matrix of the signal and data and K,, is the covari-
ance matrix of the measured data.

The matrix H can be thought of as an operator that projects the data vector from
the high dimensionality measurement space into the low dimensionality signal space.
The dimensionality of the signal s~ = is determined by the number of significant eigen-
vectors of the operator and thi¢ in turn depends upon the covariance matrices them-
selves. To a first approximatior the more that is known about a signal the lower will
be the dimensionality of the signal space. For example if the signal were deterministic
except for amplitude the signal space would be one dimensional and only the signal
waveform would appear at the filier output regardless of the input.

The matrix operator filter design can be carried out for EP waveforms in the fol-
lowing manner. From an ensemble of measured waveforms the latency corrected aver-
age (LCA) is computed. From the output of the LCA procedure the individual com-
ponents in the waveform are identified, their shapes detecrmined and the means and
standard deviations of their latency variations estimated. From this information the
covariance matrix of the signal can be determined and the covariance matrix of the
measured data is calculated directly from the data set. From these two matrices the
filter matrix is computed.

Filters have been designed and tested using both simulated and measured data.

“Figure 1 shows an example of filtering simulated data. Figure 1a is the signal, Figure

1b shows samples of signal plus noise and Figure 1c shows the filtered versions of Fig-
ure 1b. A filter was designed for EP waveforms obtained using a checkerboard visual
stimulus. Figure 2 shows individual measured EP waveforms (dashed) and filtered ver-
sions of the waveforms (solid). The very substantial noise reduction performance of
this filter is readily evident in ‘ewres * .ad 2. The performance of this type of filter
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(a) ' (b) (c)
Figure 1. Time-varying filter performance. (a) Underlying signal.
: (b) Signal plus noise. (c) Filtered waveform. All waveforms
y are 224 ms in duration.
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for quantitative measurements on single EP waveforms is being evaluated.

;‘ . Effects of Noise on Latency Measurements of EP Components. Whénever repeti-
[ tive measurements of evoked potentials are made it is foand that there are significant
variations in the amplitudes and latencies in the individual peaks or components that
are present. This is a well known phenomenon and has frequently been discussed in the
literature. Figure 3 shows a histogram of the latencies of peaks identified in 100 visual
evoked potentials elicited by a flash stimulus for a subject with eyes closed. It is scen
from the figure that the measured latencies sre distributed around a mean value in a
manner suggesting that a certain amount of randomness is associated with their
occurrence.

There are two possible causes for the randomness associated with measurements of
this kind. First, the measurements of EP’s are made in the presence of the ongoing
EEG which may significantly affect the shape of the observed waveform and alter both
latency and amplitude estimates. Second the EP waveform itself may be varying from
siimulus to stimulus. It is important for several reasons to be able to differentiate
between these two effects. One reason is to better define the characteristics and param-
eters associated with the single EP. Another is to provide quantitative information for
the design of improved signal processors for analysis and classification of single EPs. It
is this latter reason that led to the research described here which is aimed at establish-
ing the degree to which the presence of the ongoing EEG considered as an additive
noise component can affect the latency measurements of components in the EP.

This problem was attacked theoretically and the resulting analytical expressions
then checked empirically. The analysis was carried out as follows. It was assumed that
an EP waveform could be approximated in the vicinity of a peak by a second order
polynomial. The coefficients of the polynomial were determined by means of a least
squares fitling of 5 points in the vicinity of a peak. The errors in estimating these
parameters in the presence of noise were also deternined theoretically. Once the
parameters are known the peak location is readily found. The variance in the peak
location estimate due to the presence of noise can be determined from the errors that
occur in the parameter estimates. A simulation was performed to verify the theoretical
results. Noise was added to a known waveshape and the peak location determined.
This was repeated many times and the variance of the peak location determined. Tests
were carried out utilizing both white noise and noise having the same covariance as

.measured EEG signals. It was found that white noise gave a slightly higher variance in

the component latency than did the EEG noise. However, the check in both cases
between the experimentally determined values and the theoretical values was quite
close. '

Latency variation or jitter due to noise depends primarily upon two parameters:
the signal-to-noise-ratio and the radius of curvature of the peak. Narrow peaks and




MSeds ~ BCoIEIsE~ sasredh SORId
et TN T v s O

M P aed

R ——
Tt -

P
- et

AT S

-12.-

high signal-to-noise ratios reduce the latency jitter produced by additive ngise. The fol-
lowing expression for the standard deviation of latency jitter was obtained.

0.88RW,
vSNR

where R is the radius of curvature of the peak, W, is the noise bandwidth and SNR is
the signal-to-noise ratio computed as the square of the peak signal amplitude divided
by the variance of the noise. This equation is valid for any sampling frequency equal to
or greater than 2W,. A convenient pulse shape for computation purposes is a single
lobe of a cosine wave. If the duration of this pulse is T seconds, then the radius of cur-

o=

vature is (-})2. To illustrate the nature of the results consider a case in which an EP

component has a duration of 30 ms, the noise bandwidth is 25 Hz and the SNR is 0dB.
The standard deviation of the latency jitter for this case would be 2 ms. Values deter-
mined from the LCA are typically 7 to 10 ms for measured EPs having similar parame-
ters. This indicates that the variations in latency must be almost entirely due to varia-
tions in the latency of the components themselves and not due to the effects of additive
noise. These results add considerable confidence to the design procedures for the

improved signal processing techniques that make use of the random variations in signal
latency.
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